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The 3D magnetic-field and temperature distibutions in a cylindrically symmetic induction-heating device are simulated with a
quasi-3D finite-element (FE) method using tensor-product shape functions, combining standard polynomial FEs defined at a 2D
triangulation with harmonic functions along the azimuthal direction.
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I. INTRODUCTION

STANDARD 2D axisymmetric finite-element (FE) simula-
tion is not applicable in case of a cylindrically symmetric

geometry combined with an asymmetric excitation or boundary
condition [1], [2], [3]. The change to a standard 3D FE model
comes together with a considerable increase in computation
cost [4]. In this paper, a quasi-3D FE method is developed for
a coupled magnetoquasistatic-thermal problem and illustrated
for a cylindrical induction-heating example [5].

II. AXISYMMETRIC MULTIPHYSICS FE MODEL

The magnetoquasistatic and thermal formulations discretized
by the edge FE shape functions ~wj(r, z) and nodal FE shape
functions Nj(r, z) [6](Fig. 1) read

Kν
_a + ωMσ

_a =
__

j s ; (1)

Kλu + Mc
du
dt

+ Rhu = Rhufluid + qv , (2)

where (r, ϕ, z) is a cylindrical coordinate system, _a and u
collect the degrees of freedom (DoFs) for the magnetic vector
potential and the temperature respectively, ufluid,

__

j s and qv
contain the ambient temperatures, electric currents and heat
losses respectively, and Kν , Mσ , Kλ, Mc and Rh denote
the FE reluctance, electric conductance, thermal conductance,
thermal heat-capacitance and boundary-convection matrices
respectively [7], [8], [9].

III. QUASI-3D MULTIPHYSICS FE MODEL

The azimuthal asymmetry of the temperature distribution

T (r, ϕ, z) =
∑
q∈Λ

∑
j

Re{uj,q Nj(r, ϕ, z)(r, z)e+jqϕ︸ ︷︷ ︸
W j,q(r,ϕ,z)

} (3)

is resolved by tensor-product FE shape functions W j,q(r, ϕ, z)
combining the standard nodal FEs Nj(r, z) defined at a 2D
cross-sectional mesh with harmonic functions e+jqϕ [10], [11],
[12]. Hereby, Λ is a well-chosen set of harmonic functions and
uj,q gathers the DoFs. The Ritz-Galerkin procedure carried out
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Fig. 1. Edge FE shape function ~wj(r, z) and nodal FE shape function
Ni(r, z) for resolving the cylindrically symmetric magnetic vector potential
and temperature at a 2D triangulation of the (r, z)-plane. The z-axis is the
axis of symmetry.

with the test functions W ∗i,p(r, ϕ, z) = Ni(r, z)e
−jpϕ, ∀p ∈ Λ

leads to the discrete 3D thermal submodel

Mc

du
dt

+ Kλu + Rhu = q
v

+ Rhufluid (4)

where the stiffness, mass and convection matrices are

Kλ = I⊗Kλ + P⊗Nλ ; (5)
Mc = I⊗Mc ; (6)
Rh = I⊗Rh , (7)

and where ⊗ denotes the Kronecker product, I ∈ R|Λ|×|Λ|
is the identity matrix, Kλ, Mc and Rh are the 2D ax-
isymmetric FE stiffness, mass and convection matrices, P =

diag
(
m2

1, . . . ,m
2
|Λ|

)
contains the squared harmonic orders

at its diagonal and Nλ is a mass-like matrix with entries
Nλ,ij =

∫
V

λNiNj dV assembled for the thermal conductiv-

ity λ at the 2D cross-sectional mesh. The treatment of the
magnetoquasistatic subproblem is analogous.

The quasi-3D FE technique allows to consider cylindrically
asymmetric thermal convection, which gives rise to an asym-



695

700

705

710

715

720

symmetry axis

excitation coil

aluminium
cylinder

(c)(b)

(a) (d) (e)

1.33

1.34

1.35

1.36

1.37

1.38

1.39
#107

tem
perature [K]

electric conductivity [S/m
]

Fig. 2. Cylinder heated by induction: (a) geometry and magnetic flux lines; (b) and (c): temperature distribution; (d) and (e): distribution of the electric
conductivity. Parts (b) and (d) show the situation with cylindrical symmetry. Parts (c) and (e) show the asymmetric situation.

metric temperature distribution and, alongside the temperature-
dependent electric conductivity, an asymmetric current distri-
bution. Further azimuthal asymmetries may originate from the
combination of asymmetric field distributions and nonlinear
conductivities. The method is extensively validated for bench-
marks for which analytical solutions exist. The convergence
study indicates an exponential convergence with respect to
the number of considered harmonics and a polynomial con-
vergence with respect to the number of 2D mesh nodes, which
confirms theoretical considerations.

IV. EXAMPLE AND CONCLUSIONS

The magnetically-thermally coupled quasi-3D FE method is
applied to an aluminum cylinder submitted to the magnetic
field excited by a cylindrical coil and cooled by thermal
convection (Fig. 2a). Figs 2b-e show cross-sections of the
cylinder at 8 azimuthal positions. In case of a cylindrically
symmetric air cooling, the heat transfer by convection and
consequently also the magnetic-field and temperature distribu-
tions are cylindrically symmetric, which is observed in Fig. 2b
and Fig. 2d by the identical color distributions in all cross-
sections. In case of an air flow from one side (from the back
side in Fig. 2), the cylindrical symmetry is lost. The quasi-
3D FE calculations still make use of the same 2D mesh.
The temperature is represented by 4 azimuthally harmonic
field components, whereas 1 additional azimuthal harmonic is
considered for the electric scalar potential. The temperature
distribution shown in Fig. 2c clearly indicates the better cooling
at the back side. The electric conductivity shown in Fig. 2d
spans a larger range than for the axisymmetric case. From the
figures, it is obvious that the asymmetric cooling at the cylinder
hull changes the field distributions drastically. Hence, a full

3D field simulation is mandatory. The computationally cheap
quasi-3D FE approach proposed here is capable of calculating
the 3D field distributions.
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